

Sustainable Land Imaging – Technology: Integrated Photonic Imaging Spectrometer

PI: Stephanie Sandor-Leahy, Northrop Grumman

Objective

- Develop next-generation compact SLI instrument based on NGAS photonic waveguides
- Reduce instrument volume by x25, mass by x7 compared to current multispectral approach
- Enable new science and data products through hyperspectral imaging (HSI) while preserving SLI data continuity through band aggregation
- Build and test a heterogeneously integrated photonic instrument covering two SLI bands: Band 9 (1.36 – 1.39µm at 3nm resolution) and Band 6 (1.56 – 1.66µm at 6nm resolution) with scalability to all SLI VNIR and SWIR bands
- Demonstrate integrated instrument performance in a relevant environment

Optical and environmental testing on prototype photonic spectrometer has been completed. Integration-ready ROICs have been fabricated.

Integrated ROIC test circuit

Spectrometer/lenslet alignment

Approach

- Leverage NGAS technical investments to execute prototype instrument development in SWIR wavelengths – Advance TRL 3 waveguide and detector designs
- Evaluate multiple ROIC approaches including NGAS photonsto-bits technique – downselect and fabricate custom ROIC for integration with detection layers
- Integrate Waveguides, Detectors, and ROIC arrays into Photonic Spectrometer Elements (PSEs) and stack multiple PSEs to form a photonic HSI instrument
- Procure lenslet array and align with PSEs
- Integrate foreoptic and demonstrate instrument performance; test instrument in a relevant environment

Key Milestones

110 y 11111001101100	
 Demonstrate spectrometer with integrated detectors Demonstrate functional spectrometer with integrated mechanical ROIC 	09/17 11/19
Complete waveguide photolithography process dev	09/20
 Complete lenslet design, fabrication, and thinning 	04/21
Complete preliminary env testing of integrated device	09/21
 Complete integration-ready ROIC fab (Round 2) 	04/22
 Complete optimized waveguide/filter fabrication 	06/22
Complete ROIC test circuit integration	10/23
Demonstrate ROIC functionality	12/23
 Demonstrate spectrometer with integrated ROICs 	02/24
 Optimize and fabricate updated waveguides and filters 	05/24
 Demonstrate integrated spectrometer with updated design 	09/24

 $TRL_{in} = 3$ $TRL_{current} = 4$

